us researchers advance artificial photosynthesis
Last Updated : GMT 09:07:40
Egypt Today, egypt today
Egypt Today, egypt today
Last Updated : GMT 09:07:40
Egypt Today, egypt today

US researchers advance artificial photosynthesis

Egypt Today, egypt today

Egypt Today, egypt today US researchers advance artificial photosynthesis

Photosynthesis
San Francisco - XINHUA

U.S. researchers have created a hybrid system of semiconducting nanowires and bacteria to mimic the natural photosynthetic process, an advancement they believe could be a potentially game-changing breakthrough.

The system is designed to capture carbon dioxide (CO2) emissions before they are vented into the atmosphere and then, powered by solar energy, convert that greenhouse gas into chemical products, including biodegradable plastics, pharmaceutical drugs and hopefully liquid fuels.

"We believe our system is a revolutionary leap forward in the field of artificial photosynthesis," said Peidong Yang, a chemist with the Materials Sciences Division of the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory and one of the leaders of this study, in a press release.

Yang also holds appointments with University of California at Berkeley.

In the natural photosynthetic process, plants use the energy in sunlight to synthesize carbohydrates from carbon dioxide and water.

As described in the latest issue of the journal Nano Letters, the artificial photosynthetic system, built by Yang and his colleagues with the Berkeley Lab and UC Berkeley, synthesizes the combination of carbon dioxide and water into acetate, the most common building block today for biosynthesis.

"In natural photosynthesis, leaves harvest solar energy and carbon dioxide is reduced and combined with water for the synthesis of molecular products that form biomass," said Christopher Chang, an expert in catalysts for carbon-neutral energy conversions and another leader of the study.

"In our system," Chang explained, "nanowires harvest solar energy and deliver electrons to bacteria, where carbon dioxide is reduced and combined with water for the synthesis of a variety of targeted, value-added chemical products."

"Our system represents an emerging alliance between the fields of materials sciences and biology, where opportunities to make new functional devices can mix and match components of each discipline, " said Michelle Chang, an expert in biosynthesis who led the project together with the two other scientists.

The system starts with an "artificial forest" of nanowire heterostructures, consisting of silicon and titanium oxide nanowires. "Our artificial forest is similar to the chloroplasts in green plants," Yang said. "When sunlight is absorbed, photo- excited electron hole pairs are generated in the silicon and titanium oxide nanowires, which absorb different regions of the solar spectrum. The photo-generated electrons in the silicon will be passed onto bacteria for the CO2 reduction while the photo- generated holes in the titanium oxide split water molecules to make oxygen."

Once the forest of nanowire arrays is established, it is populated with microbial populations that produce enzymes known to selectively catalyze the reduction of carbon dioxide. And once the carbon dioxide has been reduced to acetate or some other biosynthetic intermediate, genetically engineered E.coli are used to synthesize targeted chemical products.

A key to the success of the artificial photosynthesis system is the separation of the demanding requirements for light-capture efficiency and catalytic activity that is made possible by the nanowire/bacteria hybrid technology. With this approach, the Berkeley team achieved a solar energy conversion efficiency of up to 0.38-percent for about 200 hours under simulated sunlight, which is about the same as that of a leaf.

"We are currently working on our second generation system which has a solar-to-chemical conversion efficiency of three-percent," Yang said. "Once we can reach a conversion efficiency of 10- percent in a cost effective manner, the technology should be commercially viable."

"Our system has the potential to fundamentally change the chemical and oil industry in that we can produce chemicals and fuels in a totally renewable way, rather than extracting them from deep below the ground," he said.

egypttoday
egypttoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

us researchers advance artificial photosynthesis us researchers advance artificial photosynthesis



GMT 09:23 2019 Friday ,30 August

Testing

GMT 09:34 2019 Monday ,19 August

Live a positive and important atmosphere

GMT 01:34 2014 Friday ,04 July

Egypt to join New York's museum exhibit

GMT 10:11 2019 Monday ,19 August

Resist your appetite and weakness

GMT 21:17 2014 Saturday ,25 January

Europe oil buyers return to Tehran to talk business

GMT 16:40 2017 Monday ,13 February

Muscat bourse edges down on weak sentiment

GMT 10:32 2011 Friday ,14 October

Milan mayor hails Kuwait for festival success

GMT 15:21 2011 Thursday ,23 June

Lost property is found art at new London show

GMT 08:10 2017 Saturday ,15 July

Attacker of 6 tourists in Hurghada arrested

GMT 09:01 2017 Wednesday ,14 June

Two doctors attacked by patient’s relatives

GMT 10:38 2016 Saturday ,26 November

Denmark eye first World Cup, chased by USA

GMT 11:35 2012 Sunday ,15 April

World\'s most incredible mountain views

GMT 12:46 2012 Tuesday ,13 March

Mini guide to Great Singapore
 
 Egypt Today Facebook,egypt today facebook  Egypt Today Twitter,egypt today twitter Egypt Today Rss,egypt today rss  Egypt Today Youtube,egypt today youtube  Egypt Today Youtube,egypt today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

egypttoday egypttoday egypttoday egypttoday
egypttoday egypttoday egypttoday
egypttoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
egypttoday, Egypttoday, Egypttoday