New study Washington - Arabstoday Obese individuals could be exposed to higher levels of radiation during routine X-ray and CT scans as most medical imaging equipments are not designed with overweight and obese patients in mind, researchers say. A new study from Rensselaer Polytechnic Institute is the first to calculate exactly how much additional radiation obese patients receive from a CT scan. Research results show the internal organs of obese men receive 62 percent more radiation during a CT scan than those of normal weight men. For obese women, it was an increase of 59 percent. New technology developed at Rensselaer by nuclear engineering expert X. George Xu could help solve this problem. Xu’s research team created ultra-realistic 3-D computer models of overweight and obese men and women, and used computer simulations to determine how X-rays interact with the different body types. These models, known as “phantoms,” can help empower physicians to configure and optimize CT scanning devices in such a way that minimizes how much radiation a patient receives. “Radiation exposure is cumulative over a patient’s lifetime. The risk associated with a radiation dose from a single CT scan is relatively small when compared with the clinical benefit of the procedure,” said Xu, head of the Nuclear Engineering Program and a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering (MANE) at Rensselaer. “But patients are increasingly undergoing multiple CT scans and other radiation-based procedures, which can lead to unnecessary radiation risk. Regretfully, our study shows that obese and overweight patients can be exposed to an even greater level of radiation. “Our new study brings us one step closer to minimizing radiation exposure and mitigating this risk to patients,” Xu added. Currently, if technicians use normal equipment settings to perform a CT scan on an obese patient, the resulting images are blurry as the X-ray photons have to travel further and make their way through layers of fat. As a result, technicians generally adjust the equipment to a more powerful setting, which produces a better image but exposes the obese patient to additional radiation. There is no mechanism for discerning the setting levels that will provide an optimal balance of the highest image clarity and the lowest radiation dose. These new phantoms for overweight and obese patients will be part of a forthcoming software package, VirtualDose, developed by Xu and his team. VirtualDose aims to enable the creation of a personalized, ultra-realistic phantom of any patient undergoing a CT scan. The program takes into consideration a patient’s individual characteristics, including age, sex, height, weight, and even if a woman is pregnant. By entering these data into the software, VirtualDose quickly creates a phantom that accurately models the patient’s internal organs. These phantoms will allow physicians and researchers to compare the radiation doses a patient will get from different CT scanner settings, and then choose the most appropriate configuration. The study has been published in the journal Physics in Medicine ‘n’ Biology. (ANI)
GMT 12:06 2018 Thursday ,13 December
Blue light in smartphones linked to blindness and some cancersGMT 11:56 2018 Friday ,30 November
Congo Ebola outbreak becomes second-worst in history, IRC saysGMT 17:52 2018 Sunday ,25 November
Russian medical team provides services to citizen in Talbiseh town in HomsGMT 11:26 2018 Thursday ,15 November
Cameroon strives to curb maternal and infant mortality in restive Anglophone regionsGMT 10:39 2018 Tuesday ,13 November
Emirati tourists warned against vaping, import of e-cigarettes into ThailandGMT 12:11 2018 Friday ,09 November
Conjoined Bhutanese twins separated by surgeons in AustraliaGMT 16:06 2018 Tuesday ,06 November
Drug-resistant bugs claim 33,000 lives a year in EuropeGMT 17:43 2018 Friday ,02 November
Study confirms cell phone radiation linked to cancer risks in male ratsMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor